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Simple Math is Enough 

. . .Mathematical depth and 
elegance a re highly des i ra ble , 
but often simple mathematics, 
artfully applied, is the key to 
s u ccess. 

---- Richard M. Karp 
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meaning making of genomic data 

Genomic data 
- Two-hybrid protein-protein interactions 
- DNA microarray mRNA transcription 
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Gmch AP nnd Eiren MB 
Genome Bwlonv 3 0  l), 1-22. 

Clustering: a group of genes is selected based 
on the similarity in their expression under 
different stimulations 

Common motifs.: search for shared nucleotide 
motifs in DNA sequences a few hundred bp 
before the transcription start of each gene 

Tavazoie et al Nat Gen 22 213. 

Example: CRCGAAA 

meaning making of genomic data 

t&7 ;n'le;-?Cii(ji3S 

.- [>f<,A, micj;i42!-ray :-p(-:F:J.4 transcription 
High rate of error in current technologies 
Think some aspect of data that are both non-random and 
biologically meaningful 
Compute a p-value associated with such non-random 
feature and use it to weed out the false positive errors 
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Protein-protein interactions: 
non-random features 

Nk =k" I 
I L 

#of links k+ko 

a Jeong et al., Nature (2001) 41 1:41-2. 

In this talk.. . 

A method of suggesting protein functions 
based on protein-protein interaction data. 

- Samanta, M., Liang, S, Proc Nafl Acad Sci USA. 
(2003) 100, 12579-1 2583. 

A method of extracting protein-binding 
DNA motifs from a single microarray 
ex pe ri men t . 
- 

- Work in progress 
Bussemaker et a/, Naf. Genef. (2001) 27 167-171. 

I 
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Yeast two-hybrid assay 

Yeast two-hybrid assay 

P. Uetz, et al. Nature 403,623-7 (2000). 
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Guessing function is difficult 

ADRI 
ADA2 trans. adaptor or co-activator 

GCN5 1 histone acetyltransferase 

I SPTl5 I TATA binding protein TBP 

SUA7 TFllB subunit 

TAF145 TFllD subunit 

TAF25 TFllD and SAGA subunit 

HKPi actin-like prorein 

signaling protein 

TAFGO TFllD and SAGA subunit 

SHOl 

I HRTI I similarity to Lotus RING-finger protein 

HOG1 high-osmo. signal transduction pathway 

I KAPI 04 I beta-katyopherin 

COP1 

TAFSO 

I PPTI 1 protein ser/thr phosphatase 

alpha chain of secretory pathway vesicles 

TFllD and SAGA subunit 

TEMI 

I RPC40 I DNA-directed RNA pol. I, 111 subunit 

Signaling protein 

Prediction of protein function is difficult 
from the raw data 

Example 2: 
YDL246C: function unknown (SGD database) 

I PH085 I Phosphate & glucose metabolism I 

YJR037W Unknown 

Proteins it 
interacts with: 
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We derive p-value based on 
two proteins having a large number of 

interaction partners in common 

2 Protein 1 interacts with n, partners; Protein 2 
interacts with n2 partners. 

The probability P of having m partners in ' \  /I 
common \ 

\d I 
Y 

counting problem #I : 

Distinct ways for protein 1 to 
have n, interacting partners h! 
is 

N! 
Similarly for protein 2 ( : )=(N-n2)ln2! 

Total number of ways of having 
n, interacting partners for 
protein 1 and n2 interacting 
partners for protein 2 
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counting problem #2: 
The protein 1 and protein 2 have rn 

interacting partners in common. 

1 I / I  

I’ / \ nl-m remaining partner for protein 1 

n3-m remaining partner for protein 2 
~ 

We derive p-value based on 
two proteins having a large number of 

interaction partners in common 

Protein 1 interacts with n, partners; Protein 2 
interacts with n2 partners. 

The probability P of having in partners in 
common \ O /I 
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Methods and Data Sources 

Start with a 
protein interaction 

p+”i!i5ns fzr z!! 

order of increasing 
probability. 

Sources: - DIP database at UCLA. 

- 

.I Sorted 
protein 
pairs 

Probability 

Protein interaction network vs. random networks 

-g lek05 
c 

0 
!& 

t 
.d 

Y IOOOOh 
k 

I I I 
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v1 
k -g lek05 ; 
c 

0 

!& - Protein interaction network 

.d 

Y IOOOOh 
k 

-50 -40 -30 -20 -10 0 

random 
power-law 

random 
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Top 1000 pairs are more than 70% likely to be have 
similar function of both proteins (random pair 3-6%). 

ADA2 

GCN5 

SPTl5 

Fuuctiond similaities of protein p a n  at hfrerent cut-offs 

trans. adaptor or co-activator 

histone acetyltransferase 

TATA bindinq protein TBP 

, Zli :! B t 

SUA7 

TAFl45 

Raw interaction 
data (shown 

I ADRI I 

- .  

TFllB subunit 

TFllD subunit 

~~ 

protein ser/thr phosphatase 

HOG1 high-osmo. signal transduction pathway 

Component:DNA end-joining repair pathway 

DNA-directed RNA pol. I ,  111 subunit 

COP1 

TAFSO 

TAF25 

ARP2 I actin-like protein 

I TFllD and SAGA subunit 

alpha chain of secretory pathway vesicles 

TFllD and SAGA subunit 

I BMHI I signaling protein I 
I TAFGO I TFllD and SAGA subunit I 

KAP104 

SHOI 

I YKUBO 

I RPC40 

similaritv to Lotus RING-finger protein 
~ 

beta-karvoDherin 



Associations of ADRI from our method 

Prot. I Log(P) 

TAF61 I -10.74 

Function of protein 

TFllD and SAGA subunit 

NGGl I -9.85 I general transcriptional adaptor or co-activator I 

~~ ~ 

TSM 1 

SPT20 

TAF60 I -9.33 1 TFllD and SAGA subunit I 

~~ ~~ 

-8.09 component of TFllD complex 

-7.83 member of the TBP class of SPT proteins that alter transcription 
site selection 

ADA2 I -9.33 I general transcriptional adaptor or co-activator I 

~ 

SPTl5 

TAF90 

TAF19 

GCN4 1 -9 19 1 transcriptinnal activatnr of aminn acid hiosynthetic Genes I 
TAFl7 1 -8.86 I TFllD and SAGA subunit 

~~ 

-7.54 the TATA-binding pi^vbin TBP 

-7.36 TFllD and SAGA subunit 

-7.08 TFIID subunit (TBP-associated factor), 19 kD 

SPT7 I -8.3 I involved in alteration of transcriDtion start site selection I 
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Raw interaction SORI 
data: SRPI 

YJR03NV 

Sorbitol dehydrogenase 

Protein transport 

Unknown 

SORI Sorbitol dehydrogenase 

HSPIO Heat-shock protein 

GAL4 I -6.94 I transcnption factor I 

-13 rlOg(P)l 
-6 (too small) 

Example 2: YDL246C 

YDL246C: function unknown (SGD database) 

PH085 
PSEI 

I Phosphate & glucose metabolism 

1 Nuclear transport of protein 

http:/lwww.nas.nasa.govlbiol 
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By clustering we can recover complexes and pathways 

202 modules are reconstructed covering most aspects of cell. 

YGL198W ? 
YGL16lC ? 

GAL1 1 (trans. mediator) 

I__ ROX3 (trans. mediator) 
YlFl (ER-Golgi transuort) 
GDIl (ER-Golgi transport) 

SRB6 (trans. mediator) r l  M E W  (trans. mediator) 

Lf MED7 (trans. mediator) 

We predicted functions of 81 unannotated proteins. 
22 nut 23 are now known to be correct. 

YDL246C: same function as SORI (sorbitol 
dehydroqenease) 

. I Pol I I  transcription mediator complex chaperon ring Complex nuclear pore complex 

ARP2 
ARP?; 

ARCIS 
ARC18 
ARC35 

oligosaccharyl transferase complex Arp2/3 complex 

,(d) (el 

ATP 17 
--iT ATPs 

ATP 1 
ATP2 
ATP I 8 
ATP6 E ATP7 

ATP synthasecomplex 

if7 
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predicted functions of 81 unannotated proteins. 
(22 out 23 are now known to be correct) 

Protein 
YFRO24C-A (YSCS5). YHRl14W (SUI) ' ,  YNLO94W 
(&PPI), YMR192w (APPZ) 
YGR268C (HUAI), YOR284W (HUAZ), YPR171W 
(BSPI) 
YJK083C (ACF4) 
YDR036C (F.H7l3) 
YKL214c fYRA2). 
YNL207W (RIOZ) 
YLR409C (ljTP21), YICRO6OW (UTP30). YGRO9OW 
(uTP22). YERO82CRJTP7)'. YJLO69UWPI Sj*. 

Predicted function 
Actin filament organization 

Actin pnkh assembly 

Actin cytoskclcton organization and biogenesis 
Protein biosynthsis in mitochondrial smdl ribusornal subunit 
mRNA pracssin#RNA metabolism 
Nucleolar protein involved in 405 ribosomal biogmmeois 
Arsaiated with U3 snoRNA and 20s rRNA biosynthesis 

- I  
I 

I I 
. I .  . _ .  

y B ~ 2 4 i c  (ENPI) 
YMRZSSW (HSHI 55)' 
YIM197W(RIXI), YNLl82C(PI3), YLRIO6C 
IhXI>Nl)* 

I snRNA binding involved 10 mRNA splicing 
bbosomal large subunit assembly and rnaintcnance 

YGK21SW (RSM27)-, YGL129c (RSM23)' 
YDL2 13C (NOP6) 

YPR144C (WP19). YDL148C (NOP14)', YLRI 86W 
(~Mtil),Y~lWC(uTPIO)',Yf3Loo4W(~PZU) 
YGLW9W (LSGI)', YDRIOIC (AMI) 
YOLD77C IBRXI). YORZffiW (NOC2h YNLl3SC 

. .. . 
1 NL306-W- (MxPsi Ej' 

Struclural CODS~IWZO~ of ribosome 
rRNA prcczssinghanscriplion elongation 
Mitochoodriai smdl rlbosomai subuNr 
snoRNA binding, 35s primary IrdnsCnpt processing 

17s prwRKA ribosomal subunit 
Bioecnsis and transmri ofribosome . .  

(FPKI) I -  
YOKlfSC (DIM2) I 3SS Primary iranscnpt prmcssing and rRSA in.dificaiiun 1 

(CWC2)' I 
(RPN13)' _I_- 

YGR232W (NAS6)'. Y G W C  (RPNI 4). YLRJZIC Pmtzasome complex 
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Our method is very robust from noise !! 

5 

We added 50% random noise, we still recover 90% of 
top 2800 associations. 
The method is not biased toward proteins with large 
interaction partners. JSNI has the largest interaction 
partners, yet none of top associations involves JSNI . @ 

summery 

i) Non-random features in the genomic data are usually 
biologically meaningful. The key is to choose the feature well. 
Having a p-value based score prioritizes the findings. 

ii) If two proteins share a unusually large number of common 
interaction partners, they tend to be involved in the same 
biological process. We used this finding to predict the functions 
of 81 un-annotated proteins in yeast. 
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chIP chip experiments 

A transcription factor (TF) is 
engineered to contain a tag 

Enriched DNA fragments that 
binds to the TF are pull out and 
compared to the background 
without enrichment. 

Using DNA chips, preferred 
binding sites are identified, 
genome-wide, to within a few 
hundred nucleotides. 

Ren et al. Science (2000); Iyer et aI. Nature 409 533 

Find the binding motif 

cis-regulatory elements (enhancers) are packed 
with protein binding sites: 2300 bp enhancer of 

endo 16 

A - IOObP 

I . . . . . . . . . k .... 
Yuh CH, Boloun H, Davldson EH , .'hence 279:1896-902 
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Motif: AGTT 

Upstream region of gene g 
Count the number of 
matches to a motif pattern 

each yeast gene 
in the upstream region of ATCAGTTGTrGCCAGTTGTATGTCGGAGTTGTAACC 

Ng= 3 

Two vectors: 
gene expression 

motif counts 
for each gene 

Make the two 
vector unit vector 
with zero mean by 
a linear 
transformation 

Compute Pearson 
correlation coefficient 
between two vectors 

For two random unit vectors 

1 C & n g  =- 
S f i  

according to large number 
theorem 

Therefore, for any motif, its 
correlation to gene 
expression can be assigned 
a p-value. 

Bussemaker et a/. Nat. Genet 27 167 
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improvements 

Allow motifs to be fuzzy 
- Motif may contain a small number of IUPAC 

characters- S(CC-;)j W(AT\. I )  KGT); M(AC), 
R(AG), Y(CT). 

Transcription factors are known to bind to 
fuzzy motifs. Therefore with IUPAC the 
motif are mere realistic. 

Fuzzy motifs require 
much more computations 

For L=lO, there are 4L=106 motifs. Each takes M 
G calculations, where G (=6000) is # of genes; 
M (=500) is # of nucleotides. 
For m IUPAC characters, add another factor of 

-3500 (for m=3) additional motifs. 

We explore sparseness of the count matrix as 
well as by storing certain intermediate results to 
achieve several hundred-fold speedup. 
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Known consensus sequence: ATTTATATTTA 
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Position Specific Weight Matrix 

L 

0 

0 

124 

G 

mnt repressor binding site 

' 7 %  
9 1 ' 1 )  I ,  1 ,  

7 9 3 3  2 

0 19 117 113 

117 3 3 2 

0 0 9 1 7  

G N C C  C 

Nucleotide position + 

c 1117 

'L , 
i .' 

17 

54 

3 

50 
- 

@f 
Field. He, AI-Upi. Stormo, J M B  271 178. ', ., 
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